Generalized Fibonacci Sequences modulo Powers of a Prime

نویسنده

  • SCOTT SELTZER
چکیده

Let us begin by defining a generalized Fibonacci sequence (gn) with all gn in some abelian group as a sequence that satisfies the recurrence gn = gn−1 + gn−2 as n ranges over Z. The Fibonacci sequence (Fn) is the generalized Fibonacci sequence with integer values defined by F0 = 0 and F1 = 1. Recall also the Binet formula: for any integer n, Fn = (α − β)/ √ 5, where α = (1 + √ 5)/2 and β = (1− √ 5)/2 are the roots of the equation f(x) = x − x− 1. Let us define (gn) as the generalized Fibonacci sequence (gn) evaluated modulo m. For example, the sequence (Fn) = (. . . , 0, 1, 1, 2, 0, 2, 2, 1, 0, . . . ) is the Fibonacci sequence evaluated modulo 3. It may be shown that any generalized Fibonacci sequence with all elements in Z modulo any integer m > 1 is a periodic generalized Fibonacci sequence with elements in Z/m. In this paper we will look at the period of such sequences modulo powers of prime numbers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Abelian Sequenceable Groups Involving ?-Covers

A non-abelian finite group is called sequenceable if for some positive integer , is -generated ( ) and there exist integers such that every element of is a term of the -step generalized Fibonacci sequence , , , . A remarkable application of this definition may be find on the study of random covers in the cryptography. The 2-step generalized sequences for the dihedral groups studi...

متن کامل

Cycles in the Generalized Fibonacci Sequence modulo a Prime

Since their invention in the thirteenth century, Fibonacci sequences have intrigued mathematicians. As well as modeling the population patterns of overly energetic rabbits, however, they have sparked developments in more serious mathematics. For example, generalized Fibonacci sequences crop up in all manner of situations, from fiber optic networks [3] to computer algorithms [1] to probability t...

متن کامل

Divisibility Properties by Multisection

The/?-adic order, vp(r), of r is the exponent of the highest power of a prime/? which divides r. We characterize the/?-adic order vp(Fn) of the F„ sequence using multisection identities. The method of multisection is a helpful tool in discovering and proving divisibility properties. Here it leads to invariants of the modulo p Fibonacci generating function for p ^ 5. The proof relies on some sim...

متن کامل

On the Divisibility of Fibonacci Sequences by Primes of Index Two

Brother Alfred has characterized primes dividing every Fibonacci sequence [2] based on their period and congruence class mod 20. More recently, in [4] Ballot and Elia have described the set of primes dividing the Lucas sequence, meaning they divide some term of the sequence. Our purpose here is to extend the results of the former paper utilizing the methods of the latter. In particular we will ...

متن کامل

COMPLETE AND REDUCED RESIDUE SYSTEMS OF SECOND-ORDER RECURRENCES MODULO p

Fix a prime/?. We say that a set S forms a complete residue system modulop if, for all i such that 0 < i < p 1 , there exists s GS such that s = J (mod /?). We say that a set S forms a reduced residue system modulo p if, for all / such that 1 < i < p -1, there exists s GS such that s = i (mod p). In [9], Shah showed that, ifp is a prime and p = 1,9 (mod 10), then the Fibonacci sequence does not...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000